CHROM. 13,968

# SEPARATION OF THE TRYPTIC PEPTIDES FROM REDUCED, ALKYLATED HEN EGG WHITE LYSOZYME BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY

L. HAEFFNER-GORMLEY, N. H. POLUDNIAK and D. B. WETLAUFER\* Department of Chemistry, University of Delaware, Newark, DE 19711 (U.S.A.) (Received April 9th, 1981)

#### SUMMARY

We describe high-performance liquid chromatographic systems for the separation of the tryptic peptides of reduced, alkylated hen eggwhite lysozyme. The resolved peptides which contained 3–23 amino acid residues were identified by determination of amino acid composition. Gradients of acetonitrile with aqueous ammonium acetate or ammonium chloride were employed to elute from a reversed-phase  $C_{18}$  column, monitoring absorbance at 205 nm, 212 nm or 280 nm. Peptides containing Scarboxymethyl-cysteine eluted more rapidly than the corresponding S-ethylsuccinimido peptides.

#### INTRODUCTION

As part of a series of investigations to determine the folding pathway of reduced lysozyme, an analytical method for tryptic peptides of that protein was required. The proposed application involves separating, estimating, and identifying cysteine-containing peptides in the series of intermediates that arise in the oxidation of the reduced protein. We wanted a method that was rapid, reliable, and sensitive, with high resolving power. For further examination of peptide fractions, it is also desirable to desalt the fractions by sublimation.

At the time these studies were begun, relatively few high-performance liquid chromatographic (HPLC) separations of tryptic peptide mixtures had been achieved 1-3,4. After unsuccessfully attempting to adapt various published systems to our objective, we began to get encouraging results with a reversed-phase C<sub>18</sub> column packing and gradient elution with ammonium salt and acetonitrile. Development of the systems was assisted by pilot reversed-phase thin-layer chromatographic (TLC) experiments. Hen egg white lysozyme (HEWL) has 129 amino acids and should theoretically yield 14 tryptic peptides as well as free lysine, arginine and leucine. In this paper we describe HPLC gradient systems which resolve most of the tryptic peptides of reduced alkylated lysozyme. The identities of the peptides have been established by amino acid analysis. While several recent publications have demonstrated the ability of reversed-phase systems to separate tryptic peptides<sup>1,3-8</sup> only a

few studies have determined the amino acid composition of tryptic peptides collected from HPLC<sup>2,3,8-13</sup>. We believe that our experience in developing successful systems will be useful to other investigators.

## MATERIALS AND METHODS

## General methods

Sephadex G-25 medium and SP-Sephadex C-25-120 were obtained from Pharmacia (Uppsala, Sweden). Amberlite AG 1-X2, 200-400 mesh, was from Bio Rad Labs. (Richmond, CA, U.S.A.).

Effluents from Sephadex and ion-exchange columns were monitored for absorbance at 230 nm on a Cecil Model CE 272 ultraviolet spectrophotometer (Cecil, Cambridge, Great Britain). Subsequently the fractions were read manually at 280 nm on a Zeiss Model MAQ III spectrophotometer (Oberkochen, Württenberg, G.F.R.).

Column fractions were collected on an LKB 7000 Ultrarac fraction collector (LKB, Stockholm, Sweden).

For amino acid analysis degassed samples were hydrolyzed at 110°C with either 6 M hydrochloric acid or 4 M methanesulfonic acid (Pierce, Rockford, IL, U.S.A.) for 24–72 h. A Beckman Model 119C amino acid analyzer (Beckman, Palo Alto, CA, U.S.A.) equipped with a single column of Beckman Type AA-20 resin was employed.

HPLC separations were performed on a Varian Model 5000 liquid chromatograph (Varian, Palo Alto, CA, U.S.A.) equipped with a Vari-chrom variable-wavelength detector and a Fischer Recordall Series 5000 dual-pen recorder (Fisher Scientific, Pittsburgh, PA, U.S.A.). A Varian reversed-phase Micropak MCH-10 column (30 cm  $\times$  4 mm I.D.) was employed with a guard column of Vydac RP resin. The reagents were analytical grade and the ammonium salt buffers were prefiltered through a Millipore Type HA 0.45- $\mu$ m filter. Water was purified on a Milli-Q system containing the following cartridges: one activated carbon, two mixed-bed deionization, and one 0.22- $\mu$ m membrane filter (Millipore, Bedford, MA, U.S.A.). HPLC-grade acetonitrile was obtained from Burdick & Jackson Labs. (Muskegon, MI, U.S.A.).

# Preparation of tryptic digests of reduced, S-alkylated HEWL

The four disulfides of HEWL (Miles Labs., South Africa) were reduced with dithiothreitol at pH 8.6 in the presence of urea and EDTA as previously described<sup>14</sup>. The reduced lysozyme was S-alkylated with either N-ethylmaleimide<sup>15</sup> or iodoacetic acid<sup>16</sup> to form respectively S-ethylsuccinimido lysozyme (ES<sub>8</sub>LZM) and S-carboxymethyl lysozyme (CM<sub>8</sub>LZM). Complete S-alkylation was confirmed by amino acid analysis and by a negative reaction with 5,5'-dithiobis-2-nitrobenzoic acid (Ellman's reagent).

Tryptic digestion of the S-alkylated lysozyme preparations was performed essentially by the method of Canfield<sup>17</sup>. Samples of 10-100 mg were dissolved at final concentrations of 0.05-1.0% in 0.10~M acetic acid,  $10^{-3}~M$  in calcium chloride. The pH was adjusted to 7 with dilute ammonium hydroxide. Diphenylcarbamyl chloride (DPCC)-treated trypsin (Sigma, St. Louis, MO, U.S.A.) was dissolved in 0.10~M acetic acid to a concentration of 1 mg/ml. Two separate additions of trypsin were

made to total 2-3% of the weight of the substrate. The pH was maintained and the digestion carried out for 18-24 h. The digestion was stopped by lyophilization.

Preliminary fractionation of the CM<sub>8</sub>LZM and ES<sub>8</sub>LZM tryptic peptides on a Sephadex G-25 medium column

The lyophilized tryptic digests from 10–24 mg of CM<sub>8</sub>LZM or ES<sub>8</sub>LZM were dissolved in approximately 3 ml of 0.10 M acetic acid and applied to a Sephadex G-25 medium column ( $110 \times 2.5$  cm I.D.). The peptides were eluted with 0.10 M acetic acid. Fractions (2 min) containing 5–6 ml were collected. Fractions were pooled, lyophilized and reconstituted in 3–6 ml of 0.10 M acetic acid for HPLC chromatography.

Preliminary anion-exchange chromatography of the  $CM_8LZM$  and  $ES_8LZM$  tryptic peptides

The lyophilized tryptic digests from 50 mg of CM<sub>8</sub>LZM or ES<sub>8</sub>LZM were dissolved in 5–10 ml of 0.10 M acetic acid and applied to a SP-Sephadex (NH<sub>4</sub><sup>+</sup>) column (46 × 1.5 cm). The peptides were eluted first with a three-chamber gradient of 500 ml each 0.040 M ammonium acetate (pH 3.80), 0.060 M ammonium acetate (pH 4.10) and 0.080 M ammonium acetate (pH 4.50) and then with a two-chamber gradient of 500 ml each 0.080 M ammonium acetate (pH 4.50) and 0.15 M ammonium acetate (pH 5.50). The column was washed finally with a 0.15 M ammonium acetate buffer made 4 M in urea and 0.10 M in sodium chloride. Fractions (7 min) of approximately 8.5 ml were collected. UV-Absorbing fractions (10  $\mu$ l) were examined by HPLC. Those giving no peak on HPLC or a single HPLC peak were hydrolyzed (1 ml) and analyzed for amino acid composition. HPLC chromatography itself was used to resolve multipeak fractions.

Preliminary cation-exchange chromatography of the  $CM_8LZM$  and  $ES_8LZM$  tryptic peptides

The lyophilized tryptic peptides from 50 mg CM<sub>8</sub>LZM or ES<sub>8</sub>LZM were dissolved in 3–5 ml of 0.01 M ammonium acetate and applied to an Amberlite AG 1-X2 (CH<sub>3</sub>COO<sup>-</sup>) column (46 × 1.5 cm I.D.). The peptides were eluted with a three-chamber gradient of 500 ml each; 0.050 M acetic acid, 0.50 M acetic acid and 2.00 M acetic acid. The column was washed finally with an additional 500 ml of 2 M acetic acid. Fractions (3 min) of approximately 4.2 ml were collected. UV-Absorbing fractions (10  $\mu$ l) were examined directly by HPLC and those showing no peak or a single 205 nm absorbance peak were hydrolyzed (1 ml) and analyzed for amino acid composition. Multipeak fractions were resolved by HPLC chromatography.

# HPLC gradient systems for mapping tryptic peptides

Separation of the tryptic peptides on HPLC was first achieved using either 0.10 M ammonium acetate or 0.10 M ammonium chloride, pH 4.1 (reservoir A) and acetonitrile (reservoir B) in the following gradient program: 0–10 min, 5–22 % B; 10–12 min, 22–24 % B; 12–14 min, 24 % B; 14–19 min, 24–28 % B; 19–25 min, 28–36 % B (system I). The conditions were: flow-rate, 1.5 ml/min; chart speed, 1 cm/min; UV detection, 280 nm for the ammonium acetate system and 205 nm for the ammonium chloride system; range, 0.05 a.u.f.s. for ammonium acetate and 0.10 units for ammonium chloride.

A modified system used 0.010 M ammonium chloride or 0.010 M ammonium acetate, pH 4.2 (reservoir A) and acetonitrile (reservoir B) in the following program: 0-20 min, 5-25% B; 20-30 min, 25-40% B (system II). Other conditions were the same as for system I, except that for ammonium acetate 212 nm detection could be used with a full scale range of 0.2 absorbance unit.

When HPLC fractions were collected, ammonium acetate buffers were used. For System I, peptides which did not absorb at 280 nm were collected by time based on their elution profile in the chloride system. For collection the back-pressure restrictor and exit line from the Vari-chrom detector were replaced with tubing having a total volume of 400  $\mu$ l. Injections of the different peptide preparations were made and the peaks collected manually. For the Sephadex G-25 column pool samples, peaks from six to ten 10  $\mu$ l injections were combined, lyophilized, hydrolyzed and the entire sample applied to the amino acid analyzer (0–5 nmol scale). For fractions from the ion-exchange columns, peaks from a single injection of 2–10  $\mu$ l were collected for amino acid analysis.

## RESULTS AND DISCUSSION

The preliminary fractionation of a tryptic digest of ES<sub>8</sub>LZM using Sephadex G-25 is shown in Fig. 1. The fractions were pooled as shown, following Anderson and Wetlaufer<sup>18</sup>. Tryptic digests of CM<sub>8</sub>LZM gave similar elution profiles to those of ES<sub>8</sub>LZM on Sephadex G-25. Pool D had an elution volume equal to the total column volume, suggesting a hydrophobic composition. Both pools C and D have higher 280 nm absorbance than pools A and B.

The HPLC gradient system using acetonitrile and 0.10 M ammonium chloride was developed to resolve the peptides in these four pools. Fig. 2 shows the elution profiles of these pools and Tables I and II give the amino acid analyses of the collected

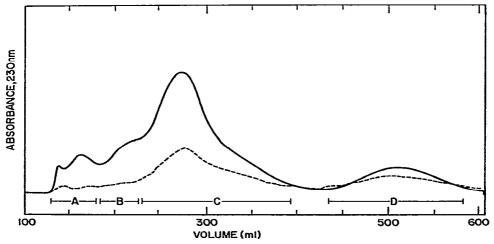



Fig. 1. The preliminary separation of the tryptic peptides from S-ethylsuccinimido lysozyme by Sephadex G-25 chromatography. The column was eluted with 0.10 M acetic acid and four peptide pools A, B, C and D were made by combining fractions as indicated. ——, Absorbance at 230 nm; ——, absorbance at 280 nm.

peaks. Peptide assignments were made considering the known sequence of HEWL<sup>17</sup>. The three major peaks from pool B of the ES<sub>8</sub>LZM digest (Fig. 2A) were identified as peptides Phe<sup>34</sup>-Arg<sup>45</sup> and a doublet of ES-Cys<sup>6</sup>-Lys<sup>13</sup> and Asn<sup>46</sup>-Arg<sup>61</sup>. The following peptides were found in pool C: Thr<sup>69</sup>-Arg<sup>73</sup>, His<sup>15</sup>-Arg<sup>21</sup>, Gly<sup>117</sup>-Arg<sup>125</sup>, Ile<sup>98</sup>-Arg<sup>112</sup> and Gly<sup>22</sup>-Lys<sup>33</sup>. The latter two peptides elute as one peak with ammonium chloride, but separate well with ammonium acetate (Fig. 2B). Pool D contained essentially pure Trp<sup>62</sup>-Arg<sup>68</sup> (Fig. 2C). The order of elution of the tryptic peptides from the Sephadex G-25 column is consistent with conventional expectations. The pool B peptides have eight, twelve and sixteen amino acid residues, and contain no tryptophan. The three large peptides found in pool C have nine, twelve, and fifteen amino acid residues, including one or two tryptophans. Trp<sup>62</sup>-Arg<sup>68</sup> has seven amino acids, two of which are tryptophan, making plausible its retention on Sephadex G-25.

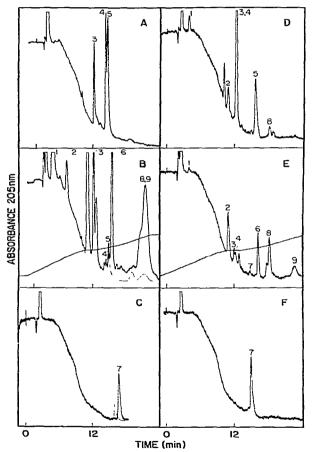



Fig. 2. HPLC separation of the lysozyme tryptic peptide pools collected from Sephadex G-25 medium chromatography. HPLC gradient system I with ammonium chloride was used as described in the text. (A), Pool B from ES<sub>8</sub>LZM digest; (B), pool C from ES<sub>8</sub>LZM digest; (C), pool D from ES<sub>8</sub>LZM digest; (D), pool B from CM<sub>8</sub>LZM digest; (E), pool C from CM<sub>8</sub>LZM digest and (F), pool D from CM<sub>8</sub>LZM digest. The numbers above the peaks refer to the peptides identified in the tables. The gradient pen is offset 1.5 min to the left of the actual elution time. The dashed curves show the tryptophan peptides with ammonium acetate in the eluent.

THE AMINO ACID COMPOSITION OF TRYPTIC PEPTIDES OF N-ETHYLMALEIMIDE BLOCKED HEN EGG WHITE LYSOZYME SEPARATED BY HPLC

TABLE 1

The data are given in residues/mole. The numbers in parentheses refer to the number of residues expected from the known sequence of lysozyme. Residue numbers are given after hydrolysis in 4 M methane sulfonic acid.

|                                         |                         |                         |                                          |                                              | and the state of t |                                          |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|-------------------------|-------------------------|------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amino acids                             | HPLC pea<br>(Fig. 2)    | peak No.                |                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 7                       | ~                       | ~                                        | 4 and 5                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                        | 80                                       | 6                                      | Between 2 and 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | Peptide(s) identified   | identified              |                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          |                                        | Sandardon o Sandardon Contractor de Carte de Car |
|                                         | $Tll^{69}$ – $Arg^{73}$ | $His^{15}$ – $Arg^{21}$ | Phe <sup>34</sup> _<br>Arg <sup>45</sup> | $Cyx^6 - Lyx^{13}$ and $Axy^{46} - Arg^{61}$ | Gly <sup>117</sup> _<br>Arg <sup>125</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trp <sup>62</sup> _<br>Arg <sup>68</sup> | Gly <sup>22</sup> _<br>Lys <sup>33</sup> | Heit <sup>98</sup> _Arg <sup>112</sup> | Lys1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| S-Ethyl-<br>succinimido                 |                         |                         |                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cysteine                                |                         |                         |                                          | 0.4(1)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4(1)                                   | 0.6(1)                                   | 9                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aspartic acid                           | (1) 00                  | 2.2 (2)                 | 3,3 (3)                                  | 3.6 (4)                                      | 1.3(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3 (2)                                  | 1.3(1)                                   | 3.2 (3)                                | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Serine                                  | 0.9(1)                  | 0.3                     | (2) 6:1                                  | 2.1 (2)                                      | 1.1 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Glutamic acid                           |                         | 1                       | 2.5 (2)                                  | 2.4 (2)                                      | 1.2(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | 0.1                                      | 0.4                                    | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| rionne<br>Glycine                       | 1.2(1)                  | 1.3 (1)                 | 1.0                                      | 2,5 (2)                                      | 1.4(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.3 (1)                                  | 2.7 (2)                                  | (2) 8.(2)                              | 0.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Alanine                                 |                         | •                       | (1) 6:1                                  | 2.8 (3)                                      | 1.2 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          | 2.5 (2)                                  | 2,3 (2)                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Valine<br>Methionine                    |                         |                         |                                          | 0.8(1)                                       | 0.8(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | 1.5(1)                                   | 2.0 (2)                                | 0.5(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Isoleucine                              |                         |                         |                                          | 1.7 (2)                                      | 0.9(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | 0,4                                      | 0.4 (1)                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Leucine<br>Tyrosine                     |                         | 1.1 (1)                 |                                          | 2.1 (2)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 1.1 (1)                                  | •                                      | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Phenylafanine                           |                         | (1)                     | 2.5 (2)                                  | 0.0 (1)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 0.7 (1)                                  |                                        | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Histidine                               |                         | 1.0 (1)                 | 0.2                                      |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          |                                        | 0.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lysine                                  | •                       | :                       | 0.2                                      | (1) 6.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 1.0(1)                                   |                                        | 0.6(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Arginine<br>*Tryptophan                 | (1)                     | (1)                     | 1:0(1)                                   | 1.0 (1)                                      | 1.0 (1)<br>0.9 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0 (1)<br>1.6 (2)                       | 0.2<br>+ (1)                             | 1.0 (1)<br>+ (2)                       | 1.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *************************************** |                         |                         |                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

\* Tryptophan is indicated present after 6 M HCl hydrolysis by +.

TABLE 11

THE AMINO ACID COMPOSITION OF TRYPTIC PEPTIDES OF IODOACETIC ACID BLOCKED HEN EGG WHITE LYSOZYME SEPARATED BY HPLC

The data are given in residues/mole. The numbers in parentheses refer to the number of residues expected from the known sequence of lysozyme.

| Peptide(s) identified $ \frac{Peptide(s) \ identified}{Tlh^{60_{-}} - His^{15_{-}} - Cys^{6_{-}}Lys^{13}} = \frac{7}{4rg^{48}} = \frac{5}{4rg^{48}} = \frac{6}{4rg^{417_{-}}} = \frac{6}{4rg^{117_{-}}} = \frac{6}{4rg^{117_$ | Annno acids           | IIPLC peak No.<br>(Fig. 2)             | Vo.                       |                                                |                       | A comment of the comm |                             |                             |                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|---------------------------|------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|--------------------------------------------|
| Peptide (s) identified $ \frac{Thr^{50} - His^{15} - Cys^6 - Lys^{13}}{Arg^{21}} = \frac{Try^{62} - Asir^{45} - Glr^{117} - Glr^{117}}{Arg^{45}} = \frac{Glr^{117} - Glr^{117} - Glr^{117}}{Arg^{45}} = \frac{Arg^{45}}{Arg^{45}} = \frac{Arg^{45}}{Arg^{45}} = \frac{Glr^{117} - Glr^{117}}{Arg^{125}} $ hyleysteine $ 1.1 (1)                                 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 1                                      | 2                         | 3 and 4                                        | 7                     | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                           | 8                           | 6                                          |
| This and the second state of the second state                                                                                                                                                                                                                                                                                                                                                                         |                       | Peptide(s) 1de                         | mtified                   |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                             |                                            |
| hyleysteine  2.0 (2) 2.5 (3) 2.4 (2) 4.0 (4) 1.5 (1)  1.1 (1) 0.8 1.0 (1) 0.1 2.0 (2) 1.2 (1)  1.1 (1) 0.8 2.8 (3) 1.6 (1) 1.6 (1) 1.6 (1)  1.2 (1) 2.1 (1) 0.6 1.0 (1) 2.7 (2) 2.4 (1)  1.2 (1) 2.1 (1) 0.6 1.0 (1) 2.7 (2) 2.4 (1)  0.9 (1) 0.9 (1) 3.0 (2) 1.0 (1)  1.0 (1) 1.0 (1) 1.6 (1) 1.0 (1) 1.9 (1)  1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1)  1.5 (2) 0.7 (2) 0.7 (1)  1.6 (3) 1.6 (4) 1.5 (2) 0.7 (1)  1.7 (4) 1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7 (1)  1.7 (1) 1.7 (1) 1.7                                                                                                                                                                                                                                                                                                                                                                         |                       | ТІн <sup>69</sup><br>Агд <sup>73</sup> | $His^{15}_{-}$ $Arg^{21}$ | $Cys^6-Lys^{13}$<br>and<br>$Phe^{34}-Arg^{45}$ | $Try^{62}$ $Arg^{68}$ | Asn <sup>46</sup><br>Arg <sup>64</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $G(p^{117}_{-}$ $Arg^{125}$ | $\frac{Gly^{22}}{Lys^{33}}$ | lleu <sup>98</sup> –<br>Arg <sup>112</sup> |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Carboxymethylcysteine |                                        |                           | 0.8(1)                                         | 1.3(1)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 1.1 (1)                     |                                            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Aspartic              |                                        | 2.0 (2)                   | 2.5 (3)                                        | 2.4 (2)               | 4.0 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.5(1)                      | 2.1 (1)                     | 2.6 (3)                                    |
| d 1.1(1) 0.8 1.0(1) 0.1 2.0(2) 1.4 (1) (1.1(1) 0.8 2.8(3) 0.1 1.6(1) 1.6(1) 1.6(1) 1.6(1) 1.6(1) (1.2(1) 0.5 4.5(4) 0.9 1.5(1) 1.1(1) 0.9(1) 0.9(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1) 1.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Threonine             | 1.1 (1)                                |                           | 1.9 (2)                                        |                       | 2.0 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2(1)                      |                             |                                            |
| d 0.8 2.8 (3) 1.6 (1) 1.6 (1) 1.6 (1) 1.2 (1) 2.1 (1) 0.6 1.0 (1) 2.7 (2) 2.4 (1) 0.5 4.5 (4) 0.9 1.5 (1) 0.9 (1) 0.9 (1) 0.9 (1) 0.9 (1) 0.9 (1) 0.9 (1) 0.2 1.1 (1) 0.2 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.5 (2) 0.7 (1) 0.7 (1) 1.5 (2) 0.7 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Serine                |                                        | 8.0                       | 1.0(1)                                         | 0.1                   | 2.0 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.4                         | 1.5(1)                      | 1.1 (1)                                    |
| 1.2 (1) 2.1 (4) 0.6 1.0 (1) 2.7 (2) 2.4 (1) 0.5 4.5 (4) 0.9 1.5 (1) 1.1 (1) 0.9 (1) 0.9 (1) 0.9 (1) 1.1 (1) 0.9 (1) 0.9 (1) 0.9 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.                                                                                                                                                                                                                                                                                                                                                                        | Glutamic acid         |                                        | 8.0                       | 2.8 (3)                                        |                       | 1.6 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.6(1)                      |                             | 9.0                                        |
| 1.2 (1) 2.1 (4) 0.6 1.0 (1) 2.7 (2) 2.4 (1) 0.5 4.5 (4) 0.9 1.5 (1) 0.9 (1) 0.9 (1) 0.9 (1) 0.9 (1) 0.9 (1) 0.9 (1) 0.9 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.3 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.1 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.                                                                                                                                                                                                                                                                                                                                                                        | Proline               |                                        |                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 0.3                         |                                            |
| (c) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Glycine               |                                        | 2.1 (1)                   | 9.0                                            | 1.0(1)                | 2.7 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4 (1)                     | 2.5(2)                      | 2.6 (2)                                    |
| (c) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alanine               |                                        | 0.5                       | 4.5 (4)                                        |                       | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5 (1)                     | 2.1 (2)                     | 2.0 (2)                                    |
| 0.9 (1) 1.2 (1) 1.6 (1) 1.6 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.5 (2) 1.0 (1) 1.0 (1) 1.5 (2) 1.0 (1) 1.0 (1) 1.0 (1) 1.5 (2) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1                                                                                                                                                                                                                                                                                                                                                                        | Valine                |                                        |                           |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1 (1)                     | 1.3(1)                      | 1.9 (2)                                    |
| an 1.0 (1) 1.6 (1) 2.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.2 (1) 0.3 (1) 0.3 (1) 0.4 (1) 0.4 (1) 0.4 (1) 0.4 (1) 0.5 (1) 0.5 (1) 0.5 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Methionine            |                                        |                           | 0.9(1)                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                             | 1.5 (1)                                    |
| 1.2 (1) 1.6 (1) 2.2 (1) 0.2 1.0 (1) 1.0 (1) 1.4 (2)  0.9 (1) 1.2 (1)  0.1 1.2 (1) 1.0 (1) 1.0 (1) 1.0 (1)  an 1.2 (1) 1.0 (1) 1.0 (1) 1.5 (2)  1.2 (1) 1.5 (2) 0.7 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Isoleucine            |                                        |                           |                                                |                       | 3.0 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0(1)                      |                             | 1.7 (1)                                    |
| 1.9 (1) 1.9 (1) 1.9 (1) 1.4 (2) 1.9 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1                                                                                                                                                                                                                                                                                                                                                                        | Leucine               |                                        | 1.2 (1)                   | 1.6 (1)                                        |                       | 2,2 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2                         | 1.1(1)                      |                                            |
| naine 1.4 (2)  0.9 (1)  0.1  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)  1.0 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tyrosine              |                                        | 1.0 (1)                   |                                                |                       | (1)6'1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | 1.0(1)                      |                                            |
| 0.9 (1)<br>0.1 1.2 (1)<br>1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1)<br>1.5 (2) 0.7 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phenylalanine         |                                        |                           | 1.4 (2)                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                             |                                            |
| 0.1 1.2 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 0.7 (1) 1.5 (2) 0.7 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Histidine             |                                        | (1)                       |                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                             |                                            |
| 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) 1.0 (1) an 1.5 (2) 0.7 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lysine                | 0.1                                    |                           | 1.2 (1)                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 1.0(1)                      |                                            |
| 1.5(2) 0.7(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arginine              | 1.0(1)                                 | 1.0 (1)                   | 1.0(1)                                         | (1) 0.1               | 1.0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0(1)                      |                             | 0.7(1)                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tryptophan            |                                        |                           |                                                | 1.5 (2)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.7(1)                      | 1.1(1)                      | 1.3 (2)                                    |

All the tryptophan-containing peptides elute late in the HPLC gradient, consistent with their relatively higher hydrophobicity. In some chromatograms of the pool C peptides a peak is seen between His<sup>15</sup>-Arg<sup>21</sup> and Phe<sup>34</sup>-Arg<sup>45</sup>; this has been identified as Lys<sup>1</sup>-Arg<sup>5</sup>, showing that trypsin did not completely cleave the Lys<sup>1</sup>-Val<sup>2</sup> bond. This peptide has been found previously in tryptic digests of lysozymes<sup>17,19</sup>.

For comparison, the HPLC maps of the corresponding pools from a CM<sub>8</sub>LZM digest are shown in Fig. 2D–F. Pool B contains Asn<sup>46</sup>–Arg<sup>61</sup> and a single peak of both Phe<sup>34</sup>–Arg<sup>45</sup> and CM-Cys<sup>6</sup>–Lys<sup>13</sup>. Pool C had the same peptide content as the corresponding ES<sub>8</sub>LZM pool; likewise pool D was Trp<sup>62</sup>–Arg<sup>68</sup> (Table II). The three S-carboxymethylated cysteinyl peptides (Cys<sup>6</sup>–Lys<sup>13</sup>, Gly<sup>22</sup>–Lys<sup>33</sup> and Try<sup>62</sup>–Arg<sup>68</sup>) elute more quickly than the corresponding S-ethylsuccinimido cysteinyl peptides. The amino acid analyses of the pool B peptides (Tables I and II) show the CM-Cys<sup>6</sup>–Lys<sup>13</sup> peptide eluting with Phe<sup>34</sup>–Arg<sup>45</sup>, the ES-Cys<sup>6</sup>–Lys<sup>13</sup> peptide elutes later, very close to Asn<sup>46</sup>–Arg<sup>61</sup>. The second half of this doublet (peaks 4 and 5) elutes in

TABLE III
THE AMINO ACID COMPOSITION OF OTHER TRYPTIC PEPTIDES OF HEN EGG WHITE LYSOZYME SEPARATED BY ION-EXCHANGE CHROMATOGRAPHY

The data are given in residues/mole. The numbers in parentheses refer to the number of residues expected from the known sequence of lysozyme.

| Amino acids                                  | HPLC peak No<br>(Figs. 2 and 3)                 | •                                               |                                                 |                           |                           |                                          |
|----------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------------------|---------------------------|------------------------------------------|
|                                              | 11                                              | 11                                              | 12                                              | 13                        | 10                        | 3                                        |
|                                              | Peptide identifie                               | d                                               |                                                 |                           |                           |                                          |
|                                              | Gly <sup>126</sup> -<br>Arg <sup>128</sup> (CM) | Gly <sup>126</sup> -<br>Arg <sup>128</sup> (ES) | Gly <sup>126</sup> –<br>Leu <sup>129</sup> (CM) | Val²-<br>Arg⁵             | Lys¹-<br>Arg⁵             | Phe <sup>34</sup> _<br>Arg <sup>45</sup> |
| S-Carboxymethyl-                             |                                                 |                                                 |                                                 |                           |                           |                                          |
| cysteine<br>S-Ethylsuccinimido-              | 0.9 (1)                                         |                                                 | 0.7 (1)                                         |                           |                           |                                          |
| cysteine Aspartic acid Threonne Serine       | 0.2                                             | 0.6 (1)<br>0.2                                  |                                                 |                           |                           | 2.7 (3)<br>1.9 (2)<br>1.3 (1)            |
| Glutamic acid Proline                        | 0.1                                             |                                                 |                                                 |                           |                           | 2.0 (2)                                  |
| Glycine Alanine Valine Methionine Isoleucine | 1.0 (1)                                         | 1.2 (1)<br>0.2                                  | 1.2 (1)<br>0.3                                  | 1.2 (1)<br>0.4<br>0.7 (1) | 0.9 (1)<br>0.2<br>1.3 (1) | 0.5<br>1.4 (1)                           |
| Leucine Tyrosine                             | 0.1                                             | 0.2                                             | 1.1 (1)                                         |                           | 1.0 (1)                   |                                          |
| Phenylalanine<br>Histidine                   |                                                 |                                                 |                                                 | 0.7 (1)                   | 0.8 (1)                   | 1.6 (2)                                  |
| Lysine<br>Arginine<br>Tryptophan             | 1.0 (1)                                         | 0.2<br>1.0 (1)                                  | 1.0 (1)                                         | 1.0 (1)                   | 0.9 (1)                   | 1.0 (1)                                  |

the same position as Asn<sup>46</sup>-Arg<sup>61</sup> in the carboxymethylated pool, allowing the identity and positions of the three peptides to be deduced. In pool C the carboxymethylated form of Gly<sup>22</sup>-Lys<sup>33</sup> is readily separated from Ile<sup>98</sup>-Arg<sup>112</sup> in either chloride or acetate buffer, unlike the S-ethylsuccinimido peptide (Fig. 2B and E). The S-ethylsuccinimido derivative of Trp<sup>62</sup>-Arg<sup>68</sup> is well separated from the other peptides while the carboxymethylated form elutes close to Asn<sup>46</sup>-Arg<sup>61</sup> and Gly<sup>117</sup>-Arg<sup>125</sup> (Fig. 2C-F). Fortunately, this overlap can be avoided by preliminary fractionation on Sephadex G-25. Therefore, by suitable choice of alkylating agent, improved separation and isolation of peptides is achieved. The longer retention times of the ES peptides suggests that the S-ethylsuccinimido group is less polar than the carboxymethyl group.

Preliminary fractionation of HEWL tryptic peptides by ion-exchange chromatography provided independent confirmation of the peak assignments made in Tables I and II. The identification of the doublet peaks 4 and 5 of ES<sub>8</sub>LZM digest pool B (Fig. 2A) as ES-Cys<sup>6</sup>-Lys<sup>13</sup> and Asn<sup>46</sup>-Arg<sup>61</sup> (Table I) was confirmed by the injec-

| 4                                          | 14                                         | 14                                       | 15                                                          | 15                                                          | 16                                         | 17                                          |
|--------------------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|---------------------------------------------|
| CM-Cys <sup>6</sup> -<br>Lys <sup>13</sup> | CM-Cys <sup>6</sup> -<br>Arg <sup>14</sup> | ES-Cys <sup>6</sup><br>Arg <sup>14</sup> | Asn <sup>74</sup> -<br>Lys <sup>96</sup> (CM <sub>3</sub> ) | Asn <sup>74</sup> -<br>Lys <sup>96</sup> (ES <sub>3</sub> ) | Val <sup>109</sup> -<br>Arg <sup>112</sup> | Gly. <sup>117</sup> -<br>Trp <sup>123</sup> |
| 1.1 (1)                                    | 0.9 (1)                                    |                                          | 3.1 (3)                                                     |                                                             |                                            |                                             |
|                                            | 0.3                                        | 0.7 (1)<br>0.3<br>0.1                    | 3.6 (4)<br>1.0 (1)                                          | 1.5 (3)<br>4.2 (4)<br>1.3 (1)                               | 0.2                                        | 1.3 (1)<br>0.9 (1)                          |
| 1.1 (1)                                    | 1.2 (1)                                    | 0.2<br>1.2 (1)                           | 3.9 (4)<br>1.0 (1)                                          | 4.4 (4)<br>1.2 (1)                                          |                                            | 0.4<br>0.9 (1)                              |
| 3.0 (3)                                    | 0.3<br>3.4 (3)                             | 0.4<br>2.7 (3)                           | 0.4<br>3.1 (3)                                              | 0.4<br>3.4 (3)                                              | 0.2<br>1.1 (1)                             | 1.3 (1)<br>1.4 (1)                          |
| 1.0 (1)                                    | 0.8 (1)                                    | 1.0 (1)                                  | 0.9 (1)<br>1.9 (2)                                          | 1.3 (1)<br>1.8 (2)                                          | 0.8 (1)                                    | 1.0 (1)                                     |
| 1.1 (1)                                    | 0.7 (1)                                    | 1.1 (1)                                  | 2.8 (3)                                                     | 2.6 (3)                                                     |                                            |                                             |
| 0.5                                        |                                            |                                          |                                                             |                                                             |                                            |                                             |
| 1.0 (1)                                    | 1.0 (1)<br>1.0 (1)                         | 0.8 (1)<br>0.9 (1)                       | 1.0 (1)                                                     | 1.0 (1)                                                     | 1.0 (1)<br>0.9 (1)                         | 1.0 (1)                                     |

tions of SP-Sephadex pool 139–154 (ES-Cys<sup>6</sup>-Lys<sup>13</sup>) and pool 42–46 (Asn<sup>46</sup>-Arg<sup>61</sup>) which gave peaks 4 and 5 respectively. Similarly, the identification of a peak of CM<sub>8</sub>LZM digest pool B (Fig. 2D) as containing both CM-Cys<sup>6</sup>-Lys<sup>13</sup> and Phe<sup>34</sup>-Arg<sup>45</sup> was verified by both amino acid analyses of Amberlite AG 1-X2 fractions 21–40 and 99–106 (Table III) and co-chromatography in HPLC System I.

The preliminary fractionation of HEWL tryptic peptides by ion-exchange chromatography also provided additional HPLC peak assignments (Table III). Some of these are peptides resulting from incomplete trypsin cleavage where there are adjacent cleavage sites. These peptides have been reported previously in the literature<sup>17,19,20</sup>. Two peptides Gly<sup>117</sup>-Trp<sup>123</sup> and Val<sup>109</sup>-Arg<sup>112</sup> require cleavages of Trp-Val and Ile-Trp, bonds not expected to be cleaved by DPCC-treated trypsin.

The elution profiles found for HEWL tryptic peptides from the ion-exchange columns were similar to those found for cation-exchange chromatography by Canfield<sup>17</sup> and Jolles *et al.*<sup>19</sup> and for anion-exchange chromatography by Anderson and Wetlaufer<sup>18</sup> and Fujio *et al.*<sup>21</sup>. The omission of pyridine from the buffer systems somewhat altered the order of elution but did not appreciably affect the yields of peptides. The absence of pyridine did allow the direct monitoring of peptide elution by absorbance at 230 nm; peptides of three or more residues were easily detected.

While HPLC System I has been useful in separating the peptides containing 5–16 amino acid residues, it suffers two limitations. First, the peptide Asn<sup>74</sup>–Lys<sup>96</sup>, known to be in pool A, is not eluted. Although it contains three cysteinyl residues neither alkylated form could be consistently eluted. Second, the free amino acids and smaller peptides were not separated. An experiment was performed using the material eluting early from the HPLC run of CM-pool C to demonstrate their presence as a group. Sequentially timed collections were made between 1.5 and 3.5 min and amino acid analyses on each obtained. In this way the presence of Cys<sup>115</sup>–Lys<sup>116</sup>, free arginine, free lysine, free leucine, Asp<sup>113</sup>–Arg<sup>114</sup>, Gly<sup>126</sup>–Cys<sup>127</sup>–Arg<sup>128</sup> and Val<sup>2</sup>–Phe<sup>3</sup>–Gly<sup>4</sup>–Arg<sup>5</sup> was demonstrated. Thus the remainder of the set of theoretical tryptic peptides from HEWL were accounted for.

The Amberlite AG 1-X2 chromatography gave better resolution for the CM<sub>8</sub>LZM digest and the SP-Sephadex chromatography was more effective for the ES<sub>8</sub>LZM digest. CM-cysteine is more acidic than ES-cysteine; therefore, the CM<sub>8</sub>LZM digest has more neutral and acidic peptides while the ES<sub>8</sub>LZM digest has more basic peptides. Peptides separated by ion exchange are often examined and further purified by paper chromatography or TLC and/or electrophoresis prior to amino acid analysis. HPLC chromatography proved to be an excellent alternative for this purpose.

HPLC Gradient system II proved to give an excellent overall resolution of the tryptic peptides of reduced, alkylated HEWL. The results of injection of unfractionated tryptic digests are shown in Fig. 3. The identification of the peaks (see Tables I, II and III) was deduced by injections of Sephadex G-25 pools and ion-exchange column fractions, and by comparison of the absorbances at 280 nm and 205 nm to further verify the tryptophan-containing peptides. The Phe<sup>34</sup>-Arg<sup>45</sup> and CM-Cys<sup>6</sup>-Lys<sup>13</sup> peaks, which eluted together in system I, were well-resolved in system II. Peptides Trp<sup>62</sup>-Arg<sup>68</sup> (CM), Asn<sup>46</sup>-Arg<sup>61</sup>, and Gly<sup>117</sup>-Arg<sup>125</sup> which clustered in the first system were now well separated. Ile<sup>98</sup>-Arg<sup>112</sup> and Gly<sup>22</sup>-Arg<sup>33</sup> (ES) separate in either chloride or acetate, using system II. The largest lysozyme peptide Asn<sup>74</sup>-Lys<sup>96</sup>,

blocked with either alkylating agent, did elute in system II, although the tricarboxy-methylated derivative coelutes with  $Gly^{22}$ -Lys<sup>33</sup> (CM). The two tetrapeptides ( $Val^{2}$ -Arg<sup>5</sup> and  $Gly^{126}$ -Leu<sup>129</sup>) and the tripeptide ( $Gly^{126}$ -Arg<sup>128</sup>) were resolved and identified by amino acid analysis (Table III). Work to locate and identify the dipeptides is still in process. Collection and identification of these small peptides should proceed easily since direct detection at 212 nm is possible with the low acetate concentration of system II.

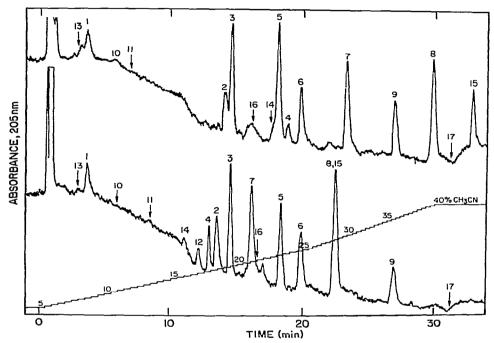



Fig. 3. HPLC separation of the unfractioned tryptic peptides of HEWL, using HPLC gradient system II with ammonium chloride as described in the text. The top tracing is the separation of  $ES_8LZM$  digest and the bottom that of  $CM_8LZM$  digest. In each case a digest of 1.3  $\mu$ g or 90 pmol lysozyme was injected. The numbers above the peaks refer to the peptides identified in the tables. The gradient pen is 1.5 mm to the right of the actual elution time.

A general comment as to the stability of the Varian MCH-10 column, packed with uncapped  $C_{18}$  material, seems warranted. Our column has been in constant use for 2 years. It has been used with other salts and with methanol as an alternative organic solvent. The column is stored in 100% acetonitrile after thoroughly washing the salt out of the system. The Sephadex column pool C peptides have been used as an internal standard. Their elution pattern has been constant once the column has been re-equilibrated. We have found that as much as four hours is necessary for aqueous acetonitrile equilibration after methanol use. The guard column resin is changed every 6 to 8 weeks.

The purposes of this investigation were twofold. First to develop a system(s) suitable for the separation of a group of tryptic peptides from lysozyme which might be useful for other protein digests. Second to modify cysteine residues within these

peptides with two different kinds of alkylating agents to determine which derivative was more suitable for resolution on a reversed-phase column. The use of ammonium salts and an acetonitrile gradient has resulted in the separation of a large number of peptides containing 3-23 amino acid residues. While our system was being developed  $Cov^9$  published a figure showing the separation of the tryptic peptides of  $\beta_h$ -endorphin on LiChrosorb RP-18 with a linear gradient of 10-50% isopropanol-ammonium acetate, pH 4. The author states that substitution of acetonitrile for isopropanol improved resolution. This system, which is similar to ours, was used to separate only five peptides, while in the present study as many as seventeen peptides are separated. Two HPLC separations on  $\mu$ Bondapak C<sub>18</sub> of tryptic peptides from hemoglobin variants<sup>11,12</sup> have recently been published. They also employ ammonium acetate (pH 6.07 and pH 5.7) and acetonitrile gradients. Our substitution of ammonium chloride for ammonium acetate in order to detect peaks at 205 nm showed the two salts to be comparable eluants. We conclude therefore that ammonium salt (pH 4-6 range)-acetonitrile systems are generally effective for peptide mapping. The sensitivity found here for peptide detection by 205 nm absorbance appears to be about the same as that reported by Rubinstein and co-workers<sup>2,8</sup> employing fluorescence detection. Our studies also show that S-ethylsuccinimido- and S-carboxymethvl-cysteinyl peptides are equally well resolved on reversed-phase columns but their different retention times can be useful in improving the overall separation of a group of peptides. It seems likely that our systems will be applicable to other peptide mixtures.

### ACKNOWLEDGEMENT

This work was supported by USPHS Grant No. GM-23713.

## REFERENCES

- 1 I. Molnar and Cs. Horváth, Pept. Proc. Amer. Pep Symp., 5th, (1977) 48.
- 2 M. Rubinstein, S. Stein and S. Udenfriend, Proc. Nat. Acad. Sci. U.S., 74 (1977) 4969.
- 3 C. Schwabe and J. K. McDonald, Biochem. Biophys. Res. Commun., 74 (1977) 1501.
- 4 W. S. Hancock, C. A. Bishop, R. L. Prestidge and M. T. W. Hearn, Anal. Biochem., 89 (1978) 203.
- 5 M. T. W. Hearn and W. S. Hancock, Trends Biochem. Sci., 4 (1979) N58.
- 6 W. L. Hollaway, A. S. Bhown, J. E. Mole and J. C. Bennett, in G. L. Hawk (Editor), Biological/Biomedical Applications of Liquid Chromatography, Marcel Dekker, New York, Basel, 1979, p. 163.
- 7 G. J. Hughes, K. H. Winterhalter and K. J. Wilson, FEBS Letters, 108 (1979) 81.
- 8 M. Rubinstein, S. Cheng-Kiang, S. Stein and S. Udenfriend, Anal. Biochem., 95 (1979) 117.
- 9 D. H. Coy, in G. L. Hawk (Editor), Biological/Biomedical Applications of Liquid Chromatography, II, Marcel Dekker, New York, Basel, 1979, p. 283.
- 10 C. S. Fullmer and R. H. Wasserman, J. Biol. Chem., 254 (1979) 7208.
- 11 W. A. Schroeder, J. B. Shelton, J. R. Shelton and D. Powars, J. Chromatogr., 174 (1979) 385.
- 12 J. B. Wilson, H. Lam, P. Pravatmuang and T. H. J. Huisman, J. Chromatogr., 179 (1979) 271.
- 13 I. M. Chaiken and C. J. Hough, Anal. Biochem., 107 (1980) 11.
- 14 S. S. Ristow and D. B. Wetlaufer, Biochem. Biophys. Res. Commun., 50 (1973) 544.
- 15 E. R. Johnson, W. L. Anderson, D. B. Wetlaufer, C. Lee and M. Z. Atassi, J. Biol. Chem., 253 (1978) 3408.
- 16 T. E. Creighton, J. Mol. Biol., 129 (1979) 411.
- 17 R. E. Canfield, J. Biol. Chem., 238 (1963) 2691.
- 18 W. L. Anderson and D. B. Wetlaufer, J. Biol. Chem., 251 (1976) 3147.
- 19 J. Jolles, E. Van Leemputten, A. Mouton and P. Jolles, Biochim. Biophys. Acta, 257(1972) 497.
- 20 T. V. Chentsova and N. A. Kravchenko, Biokhimiya, 43 (1978) 1977.
- 21 H. Fujio, R. E. Martin, Y. Ha, N. Sakato and T. Amano, Biken J., 17 (1974) 73.